

A workspace-based analysis of adjuncts

Daniel Milway University of Toronto dan.milway@gmail.com

Annual Meeting of the LSA 5 January 2020

1 Overview

- (PI) THE PROBLEM
 - Adjuncts are best characterized as syntactically invisible/vacuous subexpressions.
- (P2) My Solution
 - This can be formalized if adjuncts are not attached to their "hosts", but derived in parallel with those "hosts".
- (P₃) Corroboration
 - This formalization predicts a number of secondary properties of adjuncts.

1.1 Plan

- I. Divide properties of adjuncts into primary and secondary.
- 2. Argue for (P1) using the primary properties of adjuncts as evidence
- 3. Sketch out (P2) in workspace-theoretic terms
- 4. Argue for (P₃).
- 5. Discuss some open questions that my proposal raises.

2 Primary/Secondary properties of Adjuncts

Adjuncts have a number of properties:

- i. Freely ordered
- (1) a. Sadie sang the song with gusto after dinner.
 - b. Sadie sang the song after dinner with gusto.
- ii. Optional
- (2) a. Sadie sang the song with gusto.
 - b. Sadie sang the song.

- iii. Stackable
- a. Sadie sang the song with gusto.
 - b. Sadie sang the song with gusto after dinner.
- iv. Islands
- (4) *Who did Sadie invite Violet without meeting __wh?
- v. (but parasitic gaps)
- (5) Who did Sadie invite __wh without meeting __PG?
- vi. Conjunctive interpretation
 - (2a) \approx Sadie sang the song **and** She did so with gusto.
- vii And more
- There's an intuitive difference between the first three properties and the remainder.
 - The first three are somehow essential properties of adjuncts.
 - * These are the **primary properties**.
 - The remainder are things we discovered later.
 - * These are the **secondary properties**.
- This dichotomy suggests a method of theorizing:
 - Start by constructing a theory that explicitly captures the primary properties,
 - Then test that theory against the secondary properties.

3 Developing a theory of adjuncts

- Adjuncts are:
 - 1. Freely ordered
 - 2. Optional
 - 3. Stackable
- Can we get these down to a single property?

Ι

- (6) a. Sadie [sang the song] $_{\alpha}$.
 - b. Sadie [[sang the song] $_{\alpha}$ with gusto] $_{\beta}$.
 - c. Sadie [[[sang the song] $_{\alpha}$ with gusto] $_{\beta}$ after dinner] $_{\gamma}$.
 - d. Sadie [[[sang the song] $_{\alpha}$ after dinner] $_{\delta}$ with gusto] $_{\zeta}$.
 - These examples are equally grammatical.
- Beyond that, the labeled expressions are *syntactically equivalent* to each other.
 - If $\alpha, \beta, \gamma, \delta$, and ζ are all VPs, selected by, say, T, then any version of T that selects α will also select the other labeled VPs.
 - cf specifiers/complements
- (7) a. Joe hit the pillow.
 - b. * Joe hit.
- (8) a. I believe Omar ate the pizza.
 - b. *I believe ate the pizza.
- If a host-adjunct expression H A is grammatically equivalent to its host H, then the adjunct must be syntactically vacuous.
 - (P_I)
 - $H^A \equiv_{\sigma} H$

4 Formalizing (P1) in derivational minimalism

- the core of derivational minimalism:
 - Phrases and sentences are derived by successive application of Merge.
- (9) Merge(X, Y) \rightarrow {X, Y}
- The output of Merge is an expression distinct from its inputs.
 - $\{X, Y\} \not\equiv_{\sigma} X \not\equiv_{\sigma} Y$
- Merge is not a good candidate for adjuncts, given (P1)
- Previous accounts introduce complications to the grammar to allow for adjuncts:
 - A new operation (Chomsky 2004)
 - An extra cycle of syntax (Stepanov 2001; Lebeaux 1991)
- But adjunction is optional

Conjecture Any concept/thought expressed by a phrase/sentence with adjuncts can be expressed by a set of sentences/phrases without adjuncts.

- General considerations of theoretical parsimony militate against adding anything to our theory that we don't absolutely need.
- Instead, we'll make do with mechanisms we would need anyway:
 - Deletion of redundant structure
 - Workspaces

4.1 Deletion

- I will make the now-standard assumption that long-distance dependencies are created by merging single phrases in multiple positions.
 - Copy theory of movement
- Only one "copy" of the phrase is pronounced.
 - The others must be deleted.
- (10) a. Derived structure

{{The cake}{was eaten {the cake}}}

b. Delete copies

{{The cake} {was eaten {the cake}}}

c. Pronounce

The cake was eaten.

- Deletion seems to be governed by two factors:
 - 1. Identity
 - If two structures are identical, delete one.
 - 2. (Asymmetric) C-command Generally, delete the structurally lower phrase. (See Trinh (2009) for more details)

4.2 Workspaces

- Recent discussions of derivational minimalism have included the notion of *workspaces* (Collins and Stabler 2016; Chomsky 2019)
- Generally, workspaces capture the intuition that arguments (usually NPs/DPs) are derived separately from the clausal spine.
- (11) Deriving The 5 girls sang the anthem
 - 1. Derive the anthem in workspace 1
 - 2. Derive *the 5 girls* in workspace 2
 - 3. Derive the entire clause in workspace 3, which includes the result of 1 and 2 $\,$
 - Individual workspaces are encapsulated
 - The domain of Merge is the workspace
 - If a phrase is being derived in a workspace, all of its constituents must be included in that workspace.
- (12) WSI: <the, girls>

WS2: <the, anthem>

- a. Merge(the, girls) \rightarrow <{the, girls}>, <the, anthem>
- b. $Merge(girls, anthem) \rightarrow undefined$

4.3 The theory of adjuncts

4.3.1 First pass

- Adjuncts derived in separate workspaces which are never merged with their hosts.
 - unlike arguments which are merged with their predicates.
- (13) Deriving The 5 girls sang the anthem with gusto
 - I. Derive the anthem in WSI
 - 2. Derive the 5 girls in WS2
 - 3. Derive with gusto in WS3
 - 4. Derive the entire clause in WS4, which includes the result of 1 and 2
- (14) <{{the, girls}, {pst, {sing, {the, anthem}}}}>, <{with, gusto}>
 - The result of this derivation is a pair of expressions, which we can linearize accordingly.
 - Problem: Adjuncts seem to have scope
 - The visible visible stars (Larson 1998)
 - She won't have danced on Sunday
 - Cartography
- (15) <{she {not {will, {have {dance}}}}}}, <{on, Sunday}>
 - How can we differentiate the possible scopes of *on Sunday*?

4.3.2 Second Pass

- Consider how scope is treated in an X-bar theoretic phrase structure:
 - an adjunct's scope is its c-command domain
 - * A takes B in its scope if A C-commands B
- Now consider:
- (16) <{she {Neg {T, {Perf {dance}}}}}>, <{she {Neg {T {Perf {on, Sunday}}}}}>
 - Here, the PP doesn't "scope over" the verb,
 - but now the PP and the verb scope under the same nodes
 - PP's c-commanders: {she, Neg, T, Perf}
 - dance's c-commanders: {she, Neg, T, Perf}
 - How do we derive it?
 - The workspaces are independent up to a point ...
 - * VP for the host
 - * PP for the adjunct
 - After this point the two workspaces are derived in lockstep

Figure 1: Low scope

Figure 2: High scope

- * Every operation in one workspace, is mirrored in the other
- * When Merge(Perf, dance) occurs, so does Merge(Perf, on Sunday), and so on.
- Why don't we pronounce all the stuff above the PP?
 - It gets deleted
 - * It's identical to the stuff in the host
 - * Not c-commanded, but decidedly ordered
 - \cdot WS1,WS2 \neq WS2,WS1

4.4 Interim Summary

- A Host-adjunct expression is underlyingly a pair of structures.
 - Each structure is derived in its own workspace.
 - These structures have identical "heads" and distinct "tails".
- (17) <{Sadie, {T, {sing, {the, song}}}}>, <{Sadie, {T, {with, gusto}}}>
 - The identical parts of the adjunct is deleted.
- (18) <{Sadie, {T, {sing, {the, song}}}}>, <{Sadie, {T, {with, gusto}}}>
 - The workspaces are inherently ordered and this order is respected in pronunciation
 - Adjunction is syntactically vacuous because host-adjunct structures don't exist in the syntax.

5 Secondary Properties

5.1 Island-hood

- Under this theory, it follows directly from the fact that the domain of Merge is restricted to the workspace.
 - In (19) who cannot be merged with the host, because it is in a different workspace.
- (19) a. *Who did Sadie invite Violet without meeting __wh?
- b. $<\{Who \{C_Q, \{... \{Sadie, \{invite, Violet\}\}\}\}\}>, \\ <\{C, \{... \{without \{meeting, who\}\}\}\}>$
- If *who* moves within its workspace, we lose the identity portion of deletion for the adjunct.
- (20) <{C, {... {Sadie, {invite, Violet}}}}}>, <{who {C_O, {... {without {meeting, who}}}}}>
 - This might surface, but not as (19 a)

5.2 Parasitic Gaps

- Parasitic gaps occur when two parallel Wh-movement operations occur in separate workspaces
- (21) a. Who did Sadie invite __wh without meeting __wh?
- b. $<\{Who \{C_Q, \{... \{Sadie, \{invite, who\}\}\}\}\}\}, <\{who \{C_Q, \{... \{without \{meeting, who\}\}\}\}\}$
- Unlike (19), each *who* stays within its workspace
- Unlike (20), the higher who and C_O in the adjunct can be deleted.

5.3 Interpreting host-adjunct structures

- Adjunction is (generally) characterized by a conjunctive interpretation.
 - Predicate Modification/Event Identification in standard formal semantics.
- In this theory host and adjunct are independent expressions.
- They compose like independent sentences:
- (22) The sky is blue., The chair broke

 → the sky is blue **and** the chair broke.
- (23) <{{the, girls}, {pst, {sing, {the, anthem}}}}>, <{{the, girls}, {pst, {with, gusto}}}> → the girls sang the anthem **and** the girls did so with gusto.
 - If the domain of Predicate Modification is coextensive with host-adjunct structures, then we can eliminate it from our repertoire of compositional operations.

6 Conclusions

6.1 The basic proposal

- Host-adjunct expressions are the result of two (or more) expressions being derived in parallel workspaces.
- No new mechanisms
 - Workspaces and deletion are needed anyway
- Existing mechanisms are not complicated
 - Merge is unchanged.
 - Delete is generalized
 - * Asymmetric c-command → any ordering.
- Naturally predicts adjunct islands, parasitic gaps, predicate modification

6.2 Possible extensions

- Coordination
 - Bošković (forthcoming) argues that the coordinated structure constraint can be unified with adjunct islands.
 - Chomsky (2019) analyzes both as results of pair-merge.
- Ellipsis
 - Adjunction:
 - * WS1 and WS2 are derived in parallel.
 - * Delete the head of WS2
 - Ellipsis:
 - * WS1 and WS2 are derived in parallel.
 - * Delete the tail of WS2?
- Head movement?
 - Also often taken to be pair-merge

6.3 Open Questions

- How is lockstep derivation ensured?
 - Generate and filter?
 - Some mechanism of controlling derivations?
- Non-adjunct "adjuncts"
 - Topicalized PPs, AdvPs, etc

References

Bošković, Željko. Forthcoming. "On Unifying the Coordinate Structure Constraint and the Adjunct Condition." Edited by A. Bárány, T. Biberauer, J. Douglas, and S. Vikner. Language Science Press. https://boskovic.linguistics.uconn.edu/wpcontent/uploads/sites/2801/2019/05/Boskovic_On-Unifying-the-Coordinate-Structure-Constraint-and-the-Adjunct-Condition.pdf.

Chomsky, Noam. 2004. "Beyond Explanatory Adequacy." In *Structures and Beyond: The Cartography of Syntactic Structures*, 3:104–31. Oxford University Press.

——. 2019. *MIT Lecture on 12 April 2019*. https://www.dropbox.com/s/kihgibzpw2uzdoa/2976_Noam_Chomsky_Lecture_4-12.mp4.

Collins, Chris, and Edward Stabler. 2016. "A Formalization of Minimalist Syntax." *Syntax* 19 (1): 43–78. https://doi.org/10.1111/synt.12117.

Larson, Richard K. 1998. "Events and Modification in Nominals." In *Semantics and Linguistic Theory*, 8:145–68.

Lebeaux, David. 1991. "Relative Clauses, Licensing, and the Nature of the Derivation." *Syntax and Semantics* 25: 209–39.

Stepanov, Arthur. 2001. "Late Adjunction and Minimalist Phrase Structure." *Syntax* 4 (2). Wiley Online Library: 94–125.

Trinh, Tue. 2009. "A Constraint on Copy Deletion." *Theoretical Linguistics* 35 (2-3). Walter de Gruyter GmbH & Co. KG: 183–227.